Homework 4

Due October 4th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is https://archive.org/details/complex-variables-2ed-dover-: page/n23/mode/2up.

- Section 2.1 (pages 84 and 85) \# 6, 16 .
- Section 2.2 (page 103) \# 1, 8, 10. For these last two, give the answer both using summation notation and by writing out the first four nonzero terms and an ellipsis as in

$$
z e^{z^{2}}=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{n!}=z+z^{3}+\frac{z^{5}}{2}+\frac{z^{7}}{6}+\cdots
$$

- Nonbook problems:

1. Let $f_{n}(z)=z^{23} \log \left(1-z^{n}\right)$. Find $f_{n}^{(30)}(0)$ for each positive integer n.
2. Let f and g be two complex functions related by $g(z)=\overline{f(\bar{z})}$. Prove that g is analytic if and only if f is.
3. Let $f(z)=\sum_{n=1}^{\infty} n z^{n}$. For which real values of θ is $f\left(1+e^{i \theta}\right)$ defined? For those values of θ, find a concise formula for $f\left(1+e^{i \theta}\right)$.

Hint: Find an antiderivative of $f(z) / z$.

