Homework 4

Due October 4th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is https://archive.org/details/complex-variables-2ed-dover-page/n23/mode/2up.

- Section 2.1 (pages 84 and 85) # 6, 16.
- Section 2.2 (page 103) # 1, 8, 10. For these last two, give the answer both using summation notation and by writing out the first four nonzero terms and an ellipsis as in

$$ze^{z^2} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{n!} = z + z^3 + \frac{z^5}{2} + \frac{z^7}{6} + \cdots$$

- Nonbook problems:
 - 1. Let $f_n(z) = z^{23} \operatorname{Log}(1-z^n)$. Find $f_n^{(30)}(0)$ for each positive integer n.
 - 2. Let f and g be two complex functions related by $g(z) = \overline{f(\overline{z})}$. Prove that g is analytic if and only if f is.
 - 3. Let $f(z) = \sum_{n=1}^{\infty} nz^n$. For which real values of θ is $f(1 + e^{i\theta})$ defined? For those values of θ , find a concise formula for $f(1 + e^{i\theta})$.

Hint: Find an antiderivative of f(z)/z.